
Digital Technical Journal Vol. 9 No. 1 1997 13

DIGITAL Visual Fortran is an integrated development
environment for Fortran applications.1 It is supported on
the Windows NT version 4.0 operating system on both
Alpha and Intel hardware and on the Windows 95 sys-
tem. DIGITAL Visual Fortran is a combination of tech-
nologies from DIGITAL and Microsoft Corporation.
The DIGITAL-supplied compiler and run-time libraries
support the DIGITAL Fortran 90 language.2 DIGITAL
Fortran 90 conforms to American National Standard
Fortran 90 (ANSI X3.198-1992) and provides many
extensions to the Fortran 90 standard. The Microsoft-
supplied integrated development environment is the
Microsoft Developer Studio, which is also used by
Microsoft Visual C++, Microsoft Visual J++ (for Java),
other Microsoft tools, and other companies’ develop-
ment tools. Developer Studio includes a text editor,
resource editors, project build facilities, an incremental
linker, a source code browser, an integrated debugger,
and a profiler. The operation of all these tools is con-
trolled from a single application. Figure 1 shows an
example of Microsoft Developer Studio from which two
Fortran source files are being edited. DIGITAL adds a
number of Fortran-specific tools to the environment,
one of which is the Fortran Module Wizard.

Design of the Fortran Module Wizard

DIGITAL designed the Fortran Module Wizard to
help Fortran developers working in the application-rich
Windows environment. The Fortran Module Wizard
supports access to dynamic link libraries (DLLs) and
servers based upon Microsoft’s Component Object
Model (COM). This support allows Fortran developers
to use the popular mechanisms that make functionality
(services) available to other software (clients).

Traditionally, Microsoft and others have provided
system interfaces and reusable libraries of code as
DLLs. A DLL is a file containing functions that can be
called by programs and other DLLs. The role of DLLs
on a Windows system is very similar to that of share-
able images on the OpenVMS operating system and
shared libraries on the UNIX system. Today, DLLs are
still the primary mechanism for accessing system inter-
faces on Windows.

Development of the
Fortran Module Wizard
within DIGITAL Visual
Fortran

Leo P. Treggiari

The Fortran Module Wizard is one of the tools
in DIGITAL Visual Fortran, a DIGITAL product for
the Fortran development environment. Visual
Fortran consists of the DIGITAL Fortran 90 compiler
and run-time libraries and the Microsoft Developer
Studio. Together, these technologies provide a
rich set of tools for the Fortran developer who
is using the Windows NT and Windows 95 sys-
tems. The Fortran Module Wizard generates
complete Fortran source code, allowing Fortran
applications to invoke routines in a dynamic link
library, methods of an Automation object, and
member functions of a Component Object
Model (COM) object.

14 Digital Technical Journal Vol. 9 No. 1 1997

When Microsoft introduced OLE version 1, the
name OLE was an acronym for object linking and
embedding. OLE version 1 enabled compound docu-
ments by allowing a document to link to, or embed
data from, another document. In 1993, Microsoft
introduced COM as the base architecture of OLE
version 2.3 COM is an extensible architecture that pro-
vides mechanisms for creating and using software com-
ponents. A software component consists of reusable
pieces of code and data in binary form that can be
plugged into other software components from other
vendors with relatively little effort.4 Like DLLs, COM
allows a software developer to provide a set of services
to multiple clients. In addition, COM has the advan-
tage of allowing the services to reside in another
process and on another machine. (Distributed COM
[DCOM] allows objects to be created and used on
remote machines.) COM also contains features that aid
in the deployment and evolution of the services.5

Microsoft has extended its languages and tools to aid
software developers in the creation of clients and
servers based upon COM (hereafter referred to as
clients and servers in this paper).

Why does a Fortran developer need help accessing
services in DLLs and servers? Calling code that is writ-
ten in another programming language is, in general,
difficult. There are complex issues around calling stan-
dards and data type representations. If a mistake is
made in manually translating a function signature
from one language into another, today’s program-
ming environments are of little help. The application
can fail at a point in the code, for example in the rou-
tine prolog, which does little to suggest the cause of
the problem. Often, solving these problems requires
understanding the intricacies of calling standards and
single stepping through assembly code. Calling the
components in a server also requires understanding
and properly using a number of COM programming
interfaces.

The Fortran Module Wizard deals with the difficul-
ties. It reads a description of a service, which the ser-
vice provider created, and generates Fortran source
code. This automatically generated code makes calling
these services as easy as calling another Fortran func-
tion or subroutine.

Figure 1
Microsoft Developer Studio, Two Fortran Source Files Being Edited

Enabling Technologies

Components of COM, Fortran 90, and the Microsoft
Developer Studio enable the functionality of the Fortran
Module Wizard. This section gives an overview of these
technologies.

COM Technologies
As mentioned earlier, COM provides mechanisms for
creating reusable software components. This paper
attempts to explain only those parts of COM, and some
technologies based on COM, necessary for the reader
to understand the use of server functionality from
code generated by the Fortran Module Wizard. COM,
OLE, and ActiveX, of course, contain many more
mechanisms.6 A number of the references listed at the
end of this paper are good sources of further read-
ing.4–7 Much of the description of COM in the follow-
ing section is taken from the Component Object
Model Specification.8

COM Objects COM is an object-based programming
model designed to promote software interoperability.
In other words, COM allows two or more applications
or components to easily cooperate with one another,
even if they were written by different vendors at differ-
ent times, in different programming languages, or if
they are running on different machines running differ-
ent operating systems. COM defines a completely stan-
dardized mechanism for creating objects and for clients
and objects to communicate. Unlike traditional object-
oriented programming environments, these mecha-
nisms are independent of the applications that use object
services and of the programming languages used to
create the objects. COM therefore defines a binary
interoperability standard rather than a language-based
interoperability standard on any given operating sys-
tem and hardware platform.

To support its interoperability features, COM defines
and implements mechanisms that allow components to
connect to each other as objects. The definition of an
object is a piece of software that contains the functions
that represent what the object can do (its intelligence)
and associated state information for those functions
(data). In other words, an object is some data structure
and some functions to manipulate that data. In this
paper, we use the term object to mean an object
instance, as opposed to an object class. An object class is
similar to a derived-type in Fortran 90 or a structure in
C. It specifies a blueprint for object instances that a
server will create upon a client’s request. An important
principle of object-oriented programming is encapsula-
tion, in which the exact implementation of those func-
tions and the exact format and layout of the data is only
of concern to the object itself. This information is hid-
den from the clients of an object and can therefore be
changed without affecting the client.

With COM, components interact with each other
and with the system through collections of function
calls, also known as methods or member functions or
requests, called interfaces. An interface is a semanti-
cally related set of member functions. The interface as
a whole represents a feature of an object. The member
functions of an interface represent the operations that
make up the feature.

For a quick look at a simple example of a COM
object, imagine a Calculator object that is willing to
provide arithmetic services to any client. It could sup-
port an interface named ICalculate. By convention,
the letter I always prefixes the name of an interface.
The ICalculate interface could contain member func-
tions named Add, Subtract, Multiply, Divide, etc. If a
client wanted to use the services of the Calculator
object, it would request COM to create an object of
class Calculator and request the ICalculate interface. It
could then call the member functions of the ICalculate
interfaces (Add, Subtract, etc.).

With COM, a pointer to an object is actually a
pointer to a particular interface that the object sup-
ports. All COM objects support the interface named
Iunknown, which contains the member functions
named AddRef, Release, and QueryInterface. All COM
objects must implement these member functions.
AddRef and Release implement object reference
counting. Clients use them to tell an object when they
are using it and when they are done. Objects delete
themselves when they are no longer being used by any
client. QueryInterface is the basis for a process called
interface negotiation, whereby a client asks an object
what services it is capable of providing. For example,
if a client had a pointer to the Calculator object’s
IUnknown interface, it could get a pointer to its
ICalculate interface by calling the IUnknown Query-
Interface member function. In general, an object can
support multiple interfaces and a client can use Query-
Interface to get a pointer to any of them. Examples in
which Fortran code calls member functions in inter-
faces are given in the section Fortran Module Wizard
Functionality. Microsoft defines a number of useful
interfaces. Object class creators are free to use existing
interfaces and define their own.

Automation Objects One Microsoft-defined interface,
IDispatch, is the basis for Automation.9 Any object
that supports this interface, also known as a dispinter-
face, is an Automation object, and can be accessed by
any Automation client. An Automation object exposes
methods and properties. Methods are functions that
perform an action on an object and are similar to the
member functions of COM objects. Properties hold
information about the state of an object. A property
can be represented by a pair of methods; one for get-
ting the property’s current value, and one for setting
the property’s value.

Digital Technical Journal Vol. 9 No. 1 1997 15

16 Digital Technical Journal Vol. 9 No. 1 1997

The capabilities of an Automation object are similar
to those of a COM object. An Automation object is, in
fact, a COM object; that is, it supports the IUnknown
interface as well as the IDispatch interface. However,
the mechanisms for using the services of the two are
very different. Microsoft designed Automation based
on the needs of scripting or macro languages (i.e.,
Visual Basic). It does not require understanding the
intricacies of calling conventions as does COM. It sup-
ports mechanisms more suitable to the dynamic query-
ing of an object’s capabilities. This makes Automation
more suited to late binding of objects, that is, invoking
methods of a previously unknown object at run time.

An Automation client accesses all the methods and
properties of an Automation object through a single
member function of the IDispatch interface named
Invoke. The client passes Invoke a number of argu-
ments that identify

■ The method, its arguments, and a place to receive
the return value, or

■ The property and its new value, or
■ The property and a place to receive its current value

In fact, Invoke could be described as the Swiss army
knife of Automation programming.

Most of the differences between Automation objects
and COM objects are hidden by the Fortran interfaces
that the Wizard generates.

Object Identification To enable the use of COM objects
created by disparate groups of developers, there must
be a method of uniquely identifying an object class
regardless of its origin. COM uses globally unique
identifiers (GUIDs) to do this. A GUID is a 16-byte
integer value that is guaranteed (for all practical pur-
poses) to be unique across space and time. COM uses
GUIDs to identify object classes, interfaces, and other
things that require unique identification. COM pro-
vides a routine named CoCreateGUID, and Microsoft
provides a utility named GUIDGEN, that a developer
uses to generate a GUID. Assigning a GUID to an
object class or interface is the job of the creator of the
class or interface. To create an instance of an object,
the developer needs to tell COM the GUID of the
object. Using 16-byte integers for identification is fine
for computers, but it poses a challenge for the typical
developer. COM supports the use of a less precise, tex-
tual name called a programmatic identifier (ProgID).
A ProgID takes the form:

application_name.object_name.object_version

For example, the name of the Basic object of the
Microsoft Word application is Word.Basic.1. Similarly,
interfaces are usually discussed using their Ixxx name
(for example, IUnknown), but their GUID uniquely
identifies them. ProgIDs are not supplied for all objects.

They are normally supplied only for Application
objects. An Application object is a top-level object that
becomes active when the application starts. It provides
a starting point for clients to access all of an applica-
tion’s subordinate objects.

Type Information Type information contains descrip-
tions of object classes, interfaces, DLLs, data structures,
and so forth that are independent of any program-
ming language. A developer accesses type information
through an interface named ITypeInfo.7 A client can
get a pointer to type information from

■ A running Automation object
■ A running COM object that supports the

IProvideClassInfo interface
■ A type library

A type library is a collection of type information for
any number of object classes, interfaces, etc. A devel-
oper can store a type library in a separate file (using a
.TLB extension by convention), or as part of another
file. For example, the type library that describes the
type information for a DLL can be stored in the .DLL
file itself. Since the type information is stored in a file, it
is available regardless of whether or not the client has a
pointer to the object(s) that the information describes.

The easiest way to create a type library is to write a
script in the Microsoft Interface Definition Language
(IDL). The Microsoft IDL compiler (MIDL) reads an
IDL script and creates a .TLB file.10 An IDL script is similar
to a C++ header file with additional syntax for informa-
tion required by COM. An example of such information
is whether an argument to a member function is an input,
an output, or an input/output argument.

To use the Fortran Module Wizard, the developer
must know where to find type information for the func-
tionality to be used. Some examples of this are given in
the section Fortran Module Wizard Functionality.

Fortran 90
This section describes features of the DIGITAL Fortran
90 language that the Fortran Module Wizard uses in
the code that it generates.

Modules Fortran 90 does not support objects, but it
does provide a new form of program unit called a
module. A Fortran module is a set of declarations that
are grouped together under a global name and are
made available to other program units by means of the
Fortran USE statement. These modules have similari-
ties to C include files but are more powerful.

The Fortran Module Wizard generates a source file
containing one or more Fortran modules and places
the following types of information in the modules:

■ Derived-type definitions—Fortran equivalents of
data structures that are found in the type information.

Digital Technical Journal Vol. 9 No. 1 1997 17

■ Procedure interface definitions—Fortran interface
blocks that describe the procedures found in the
type information.

■ Procedure definitions—Fortran functions and sub-
routines that are wrappers for the procedures found
in the type information. The wrappers make the
external procedures easier to call from Fortran by
handling data conversion and low-level invocation
details.

The use of modules allows the Fortran Module Wizard
to encapsulate the data structures and procedures
exposed by an object or DLL in a single place. These
definitions can be shared in multiple Fortran programs.

Attributes The DIGITAL Fortran 90 language sup-
ports a number of calling convention attributes that
allow Fortran programs to call programs written in
other programming languages. Some attributes select
the calling convention (STDCALL, C, VARYING).
Others determine whether an argument is passed by
value or by reference (VALUE, REFERENCE). Another
attribute defines the external name of the procedure
(ALIAS).

Pointer To Procedure The address of a COM member
function is never known at program link time. The
developer must get a pointer to an object’s interface at
run time, and the address of a particular member func-
tion is computed from that. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedure.

Microsoft Developer Studio
Microsoft Developer Studio provides a number of
methods that allow software developers to extend its
environment.11 This section describes these methods.

Tools Menu Developer Studio contains a Customize
dialog box through which the developer can add utili-
ties to the Tools menu and then run those utilities
from within Developer Studio.

Gallery The Developer Studio Gallery provides a
central repository for all reusable parts of projects. The
reusable parts can range from something as simple as a
bitmap to something as complex as a DLL.

Developer Studio Object Model Developer Studio
provides a set of COM objects that give developers
programmatic control of its functionality. Users can
create commands that perform specific tasks and add
them to a toolbar. The Developer Studio Object
Model is programmed in three ways: (1) by creating
macros in the Visual Basic Scripting Edition Language

(VBScript); (2) by creating a Developer Studio DLL
Add-in, which is a server implemented as a DLL; and
(3) by creating a separate Automation client that con-
nects to the Developer Studio objects.

Wizards A wizard is code that creates the starter
files for a new application or adds a feature to an
existing application. Wizards that add features are
stored in the Developer Studio Gallery. Wizards that
create starter files for a new application are called
AppWizards. When the developer requests the cre-
ation of a new project, Developer Studio presents a
list of the types of project that can be created (for
example, a console application or a DLL). In addi-
tion, it lists the installed AppWizards that can gen-
erate complete applications. Often they contain
options that allow the developer to choose the fea-
tures of a generated application.

Microsoft Visual C++ provides a number of
AppWizards; most of them can create typical C++
applications. In addition, to aid developers in extend-
ing Developer Studio, one AppWizard creates the
starter files for a custom AppWizard, and another
creates the starter files for a DLL Add-in. The Fortran
Module Wizard is currently implemented as an appli-
cation that runs from the Developer Studio Tools
menu. In the future, it may be a Developer Studio
AppWizard.

Fortran Module Wizard Functionality

This section describes the user interface of the Fortran
Module Wizard and presents some samples of the code
generated by the Wizard. It also shows examples of
calling the generated code from Fortran.

User Interface
Upon opening the Fortran Module Wizard from the
Tools menu, the user is presented with a series of
dialog boxes. From these, the user selects the type
information for the functionality needed.

Figure 2 shows the first dialog box. It requests the
user to choose the source of the type information that
describes the required functionality. The developer
must consult the documentation to determine what
type of object (or DLL) the functionality is imple-
mented as, and where to find its associated type infor-
mation. The choices are the following:

■ Automation object
■ Type library containing automation information
■ Type library containing COM interface information
■ Type library containing DLL information
■ DLL containing type information

18 Digital Technical Journal Vol. 9 No. 1 1997

Automation Object Microsoft recommends that servers
provide a type library. Some applications, for example
Microsoft Word version 7.0, do not, but they do
provide type information dynamically when running.
When this option is selected, Developer Studio dis-
plays the dialog box shown in Figure 3. The user then
enters the name of the application, the name of the
object, and optionally the version number. Note that
this method works only for objects that provide a
ProgID. ProgIDs are entered into the system registry
and identify, among other things, the executable pro-
gram that is the object’s server.

After the user enters the information and presses the
“Generate button,” the Fortran Module Wizard asks
COM to create an instance of the object identified by
the ProgID that the Wizard constructs from the user-
supplied information. COM starts the object’s server if
it needs to do so. The Wizard then asks the object for
its type information and generates a file containing
Fortran modules.

Other Options If the user chooses one of the remain-
ing options, that is, any of the type libraries or the DLL
(see Figure 2), Developer Studio displays the dialog
box shown in Figure 4. From this dialog box, the user
chooses the type library (or file containing the type
library) and, optionally, the specific components of the
type library.

At the top of the dialog box, a “combo box” lists all
the type libraries that have been registered with the
system. Their file names have a number of different file
extensions, for example, .OLB (object libraries) and
.OCX (ActiveX controls). The user either selects a type
library from the list or presses the “Browse button” to
find the file using the standard “Open dialog box.”
After selecting a type library, the user presses the
“Show button” to list the interfaces described in the
type library. By default, the Fortran Module Wizard
uses all the interfaces; however, the developer can select
the ones desired from the list.

After the user enters the information and presses the
“Generate button,” the Fortran Module Wizard asks
COM to open the type library and generates a file con-
taining Fortran modules.

Generated Code
The Fortran Module Wizard generates different code,
depending upon the type of object or DLL described by
the type information. Note that the generated code is a
static representation of an object’s type information. If
the type information should change in a future release
of the object, the Wizard would need to be run again.

Fortran Run-time Support DIGITAL Visual Fortran
provides a set of run-time routines that present to the
Fortran programmer a higher-level abstraction of the

Figure 2
Fortran Module Wizard Dialog Box

Digital Technical Journal Vol. 9 No. 1 1997 19

Figure 3
Microsoft Developer Studio Dialog Box for Application Object Selection

Figure 4
Microsoft Developer Studio Dialog Box for Type Library Selection

20 Digital Technical Journal Vol. 9 No. 1 1997

IDispatch member functions and other COM functions.
The routines are used in the code that the Wizard gen-
erates. They allow the programmer to perform the fol-
lowing tasks:

■ Initialize the COM library.
– COMInitialize initializes the COM library.
– COMUninitialize uninitializes the COM library.

■ Get an interface pointer of an object.
– COMCreateObject passes a programmatic identi-

fier or class identifier, and it creates an instance of
an object and returns a pointer to one of the object’s
interfaces.

– COMGetActiveObject passes a programmatic
identifier or class identifier, and it returns a
pointer to an interface of a currently active object.

– COMGetFileObject passes a file name, and it
returns a pointer to the IDispatch interface of an
Automation object that can manipulate the file.

– COMCLSIDFromPROGID passes a program-
matic identifier, and it returns the corresponding
class identifier.

– COMCLSIDFromString passes a class identifier
string, and it returns the corresponding class
identifier.

■ Get or set the value of a property of an Automation
object.
– AUTOSetProperty passes the name or identifier

of the property and a value, and it sets the value of
the Automation object’s property.

– AUTOGetProperty passes the name or identifier
of the property, and it gets the value of the
Automation object’s property.

■ Invoke a method of an Automation object.
– AUTOAllocateInvokeArgs allocates an argument

list data structure that holds the arguments that
the user will pass to AUTOInvoke.

– AUTOAddArg passes an argument name and
value, and it adds the argument to the argument
list data structure.

– AUTOInvoke passes the name or identifier of an
object’s method and an argument list data struc-
ture, and it invokes the method with the passed
arguments.

– AUTODeallocateInvokeArgs deallocates an argu-
ment list data structure.

– AUTOGetExceptionInfo retrieves the exception
information when a method has returned an
exception status.

■ Perform IUnknown interface member functions.
– COMAddObjectReference adds a reference to an

object’s interface.
– COMReleaseObject indicates that the program is

done with a reference to an object’s interface.
– COMQueryInterface passes an interface identifier,

and it returns a pointer to an object’s interface.

DIGITAL Visual Fortran provides three Fortran
modules that define basic COM information:

■ DFCOMTY defines basic COM types.
■ DFCOM defines the interfaces to the DIGITAL

Visual Fortran COM routines and to some COM
system routines.

■ DFAUTO defines the interfaces to the DIGITAL
Visual Fortran Automation routines.

Automation Objects Figure 5 contains code gener-
ated by the Fortran Module Wizard for the Word.Basic
object of Microsoft Word version 7.0. Word.Basic is an
Automation object with almost 1,000 methods. These
methods represent the functionality of the Word Basic
language, which is the programming interface to
Microsoft Word. The Microsoft Word, Word Basic
documentation contains information on the methods
and their arguments.12 We discuss some of the meth-
ods here in a simple example of Fortran code automat-
ing Word Basic to perform the task of replacing all the
occurrences of a word in a document with another
word. The Word.Basic methods of interest for this
example are the following:

■ AppShow makes the Microsoft Word application
visible.

■ FileOpen opens a document.
■ EditReplace replaces a string with another string.
■ FileSaveAs saves a document.

Figure 5 contains code from the Fortran subroutine
generated for the Word Basic FileOpen method. It
is representative of the code generated for all
Automation methods. The lines are annotated on the
left side with numbers that are not part of the source
code but correspond to the list below. Note that the
naming convention used for the generated wrappers is
objectname_methodname. Any periods in the name
are replaced by underscores.

1. If the type information provides a comment that
describes the method, the comment is placed
before the beginning of the procedure.

2. The first argument to the procedure is always
$OBJECT. It is a pointer to an Automation object’s
IDispatch interface. The last argument to the proce-
dure is always $STATUS. This optional argument can
be specified if the Fortran programmer wishes to
examine the return status of the method. The
IDispatch Invoke member function returns a status of
type HRESULT, which is a 32-bit value. HRESULT
has the same structure as a Win32 error code. In
between the $OBJECT and $STATUS arguments
are the method arguments’ names determined from
the type information. When the type information
does not provide a name for an argument, the
Fortran Module Wizard creates a $ARGn name.

Digital Technical Journal Vol. 9 No. 1 1997 21

1. COMCreateObject requests COM to create an
object with the ProgID Word.Basic. A pointer
to the Word.Basic object’s IDispatch interface is
returned in “wordapp.” The IDispatch interface
is returned with a reference count of 1.

2. The code checks to ensure that an IDispatch pointer
was returned. If not, it displays an error message and
exits. The programmer can examine the status vari-
able for the specific status return code.

3. The code calls Word.Basic methods to show the
Microsoft Word window, open the document,
replace the string, and save the modified document.

4. COMReleaseObject releases the single reference to
the object’s IDispatch interface so that Microsoft
Word can terminate.

COM Objects The Microsoft PowerPoint version 7.0
type library contains a description of a number of COM
objects and interfaces that make up the programmable
interface to the Microsoft PowerPoint application.
Figures 7 and 8 contain code generated by the Fortran
Module Wizard from the Microsoft PowerPoint version
7.0 type library. Unlike Microsoft Word, which provides
a single object that presents all of Word’s programmable
functionality, PowerPoint provides a hierarchy of
objects. The top-level object, Application, is identified by
the ProgID PowerPoint.Application.7. The Application
object contains member functions that return a pointer
to subordinate objects, including the Presentations

3. This is an example of an attribute statement used to
specify the calling convention of an argument.

4. Methods can take optional arguments that must fol-
low all the required arguments. In this method,
there are no required arguments. The Fortran
Module Wizard generates source lines for each
argument using the data type and calling conven-
tions found in the type information.

5. AUTOAllocateInvokeArgs allocates a data structure
that is used to collect the arguments that the pro-
grammer passes to the method. AUTOAddArg adds
an argument to this data structure.

6. For each optional argument, the Fortran PRESENT
function is used to determine if the caller supplied
the argument. If so, the argument is added to the
argument list.

7. AUTOInvoke invokes the named method passing
the argument list. This returns a status result.

8. If the caller supplied a status argument, the code
copies the status result to it.

9. AUTODeallocateInvokeArgs deallocates the mem-
ory used by the argument list data structure.

Figure 6 shows code from a user-written Fortran
program that invokes Microsoft Word to replace all
the occurrences of a word in a document with another
word. The example code is annotated with numbers
that correspond to the following list.

1- !Opens an existing document or template
2- SUBROUTINE Word_Basic_FileOpen($OBJECT, Name, ConfirmConversions,

ReadOnly, LinkToSource, AddToMru, PasswordDoc, PasswordDot,
Revert, WritePasswordDoc, WritePasswordDot, Connection,
SQLStatement, SQLStatement1, $STATUS)

!DEC$ ATTRIBUTES DLLEXPORT :: Word_Basic_FileOpen
IMPLICIT NONE
INTEGER*4, INTENT(IN) :: $OBJECT ! Object Pointer

3- !DEC$ ATTRIBUTES VALUE :: $OBJECT
4- CHARACTER*(*), INTENT(IN), OPTIONAL :: Name ! BSTR

!DEC$ ATTRIBUTES REFERENCE :: Name

...
INTEGER*4, INTENT(OUT), OPTIONAL :: $STATUS ! Method status
!DEC$ ATTRIBUTES REFERENCE :: $STATUS
INTEGER*4 $$STATUS
INTEGER*4 invokeargs

5- invokeargs = AUTOALLOCATEINVOKEARGS()
6- IF (PRESENT(Name)) CALL AUTOADDARG(invokeargs, ‘Name’, Name,

.FALSE., VT_BSTR)

...
7- $$STATUS = AUTOINVOKE($OBJECT, ‘FileOpen’, invokeargs)
8- IF (PRESENT($STATUS)) $STATUS = $$STATUS
9- CALL AUTODEALLOCATEINVOKEARGS (invokeargs)

END SUBROUTINE Word_Basic_FileOpen

Figure 5
Representative Code Generated for Automation Methods

22 Digital Technical Journal Vol. 9 No. 1 1997

object. The Presentations object consists of a collection
of Presentation objects. A Presentation contains a mem-
ber function that returns a pointer to its SlideShow
object, and so on. By navigating this hierarchy, the devel-
oper can select a pointer to a particular object’s interface.
A code example in which we use some of the PowerPoint
objects and interfaces to run a slide presentation from
PowerPoint is given later in this section.

Figure 7 contains the interface description of the
Presentations object’s member function named Open. It
is representative of the interfaces generated for all COM
member functions. The procedure naming convention
is objectname_memberfunctionname. The Open func-
tion opens an existing PowerPoint presentation.

1. The first argument to the procedure is always
$OBJECT. It is a pointer to the object’s interface.
The remaining argument names are determined
from the type information.

2. A BSTR is a length-prefixed string data type primar-
ily for use by Automation objects. The wrappers
generated for COM member functions convert
from Fortran strings to BSTRs and vice versa.

3. A VARIANT is a data structure that can contain any
type of Automation data. It contains a field that
identifies the type of data and a union that holds the
data value. The use of a VARIANT argument allows
the caller to use any data type that can be converted
into the data type expected by the member function.

Figure 7
Code Generated by Fortran Module Wizard from Microsoft PowerPoint, Interface Description of Open Function

INTERFACE
1- INTEGER*4 FUNCTION Presentations_Open($OBJECT, fileName,

ReadOnly, Untitled, WithWindow, Open)
USE DFCOMTY
INTEGER*4, INTENT(IN) :: $OBJECT ! Object Pointer
!DEC$ ATTRIBUTES VALUE :: $OBJECT

2- INTEGER*4, INTENT(IN) :: fileName ! BSTR
!DEC$ ATTRIBUTES VALUE :: fileName

3- TYPE (VARIANT), INTENT(IN), :: ReadOnly ! (Optional Arg)
!DEC$ ATTRIBUTES VALUE :: ReadOnly
TYPE (VARIANT), INTENT(IN), :: Untitled ! (Optional Arg)
!DEC$ ATTRIBUTES VALUE :: Untitled
TYPE (VARIANT), INTENT(IN), :: WithWindow ! (Optional Arg)
!DEC$ ATTRIBUTES VALUE :: WithWindow

4- INTEGER*4, INTENT(OUT) :: Open
!DEC$ ATTRIBUTES REFERENCE :: Open

!DEC$ ATTRIBUTES STDCALL :: Presentations_Open
END FUNCTION Presentations_Open
END INTERFACE

5- POINTER(Presentations_Open_PTR, Presentations_Open)

Figure 6
Code from a User-written Fortran Program That Invokes Microsoft Word

! Create a Word object and make it visible
1- CALL COMCREATEOBJECT (“Word.Basic,” wordapp, status)
2- IF (wordapp == 0) THEN

WRITE (*,
‘(“ Unable to create Microsoft Word object; Aborting”)’)

CALL EXIT(-1)
END IF

3- CALL Word_Basic_AppShow(wordapp, “,” $STATUS=status)

! Open the document
CALL Word_Basic_FileOpen(wordapp, filename, $STATUS=status)

! Replace all occurrences of the string
CALL Word_Basic_EditReplace(wordapp, findstring, replacestring,

ReplaceAll=.TRUE., $STATUS=status)

! Save the file
CALL Word_Basic_FileSaveAs(wordapp, filename, $STATUS=status)

! Release the Word.Basic object since we are done
4- status = COMRELEASEOBJECT(wordapp)

Digital Technical Journal Vol. 9 No. 1 1997 23

4. Nearly every COM member function returns a status of
type HRESULT. Therefore if a COM member func-
tion produces output, it uses output arguments to
return the values. In this example, the Open argument
returns a pointer to a PowerPoint Presentation object.

5. The interface of a COM member function looks
similar to the interface for a DLL function with one
major exception. Unlike a DLL function, the address
of a COM member function is never known at pro-
gram link time. To compute the address of a particular
member function, the developer must get a pointer to
an object’s interface at run time. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedure. Figure 8 shows an example of its use.

Figure 8 contains the wrapper generated by the
Fortran Module Wizard for the Open function. The
name of a wrapper is the same as the name of the cor-
responding member function, prefixed with a $. The
numbers inserted at the left margin of the code exam-
ple correspond to the following list.

1. The wrapper takes the same argument names as the
member function interface.

2. Member function arguments of type BSTR are of
type CHARACTER*(*) in the wrapper.

3. The wrapper computes the address of the member
function from the interface pointer and an offset
found in the interface’s type information. In imple-
mentation terms, the sequence is the following: an
interface pointer to a pointer to an array of function
pointers called an Interface Function Table (see
Figure 9).

4. The wrapper declares a local variable to hold the
BSTR to be passed to the member function. The next
line does the conversion.

5. Optional VARIANT arguments of a COM member
function are represented by a VARIANT with distin-
guished values. OPTIONAL_VARIANT is defined
in the DFCOMTY module with the distinguished
values.

6. The offset of the Open member function is 60. The
code assigns the computed address to the function
pointer Presentations_Open_PTR, which was
declared in Figure 7, and then calls the function.

Figure 8
Code Generated by Fortran Module Wizard from Microsoft PowerPoint, Wrapper for Open Function

1- INTEGER*4 FUNCTION $Presentations_Open($OBJECT, fileName,
ReadOnly, Untitled, WithWindow, Open)

!DEC$ ATTRIBUTES DLLEXPORT :: $Presentations_Open
IMPLICIT NONE
INTEGER*4, INTENT(IN) :: $OBJECT ! Object Pointer
!DEC$ ATTRIBUTES VALUE :: $OBJECT

2- CHARACTER*(*), INTENT(IN) :: fileName ! BSTR
!DEC$ ATTRIBUTES REFERENCE :: fileName
TYPE (VARIANT), INTENT(IN), OPTIONAL :: ReadOnly
!DEC$ ATTRIBUTES REFERENCE :: ReadOnly
TYPE (VARIANT), INTENT(IN), OPTIONAL :: Untitled
!DEC$ ATTRIBUTES REFERENCE :: Untitled
TYPE (VARIANT), INTENT(IN), OPTIONAL :: WithWindow
!DEC$ ATTRIBUTES REFERENCE :: WithWindow
INTEGER*4, INTENT(OUT) :: Open ! IDispatch
!DEC$ ATTRIBUTES REFERENCE :: Open
INTEGER*4 $RETURN

3- INTEGER*4 $VTBL ! Interface Function Table
POINTER($VPTR, $VTBL)
TYPE (VARIANT), :: $ VAR_ReadOnly
TYPE (VARIANT), :: $ VAR_Untitled
TYPE (VARIANT), :: $ VAR_WithWindow

4- INTEGER*4 $BSTR_fileName ! BSTR
$BSTR_fileName = ConvertStringToBSTR(fileName)

5- IF (PRESENT (ReadOnly)) THEN
$VAR_ReadOnly = ReadOnly

ELSE
$VAR_ReadOnly = OPTIONAL_VARIANT

Presentations_Open_PTR = $VTBL
END IF
...

6- $VPTR = $OBJECT ! Interface Function Table
$VPTR = $VTBL + 60 ! Add routine table offset
Presentations_Open_PTR = $VTBL
$RETURN = Presentations_Open($OBJECT, $BSTR_fileName,

ReadOnly, Untitled, WithWindow, Open)
$Presentations_Open = $RETURN

END FUNCTION $Presentations_Open

24 Digital Technical Journal Vol. 9 No. 1 1997

In fact, PowerPoint provides dual interfaces. A dual
interface is a combination of an IDispatch interface
and COM member functions. The IDispatch inter-
face of the dual interface can be used by Automation
clients, and the COM member functions can be used
by COM clients. This means that for PowerPoint, and
any server that provides dual interfaces, the Fortran
developer can choose to generate a Fortran module
for the Automation interfaces or the COM interfaces.
The Fortran interfaces generated by the Wizard likely
will not be much different. COM interfaces typically
provide better performance since there is less over-
head in invoking COM member functions than
dispinterface methods through the IDispatch Invoke
member function.

Figure 10 shows code from a user-written Fortran
program that invokes PowerPoint to run a slide pre-
sentation. The code example is annotated with num-
bers that correspond to the following list.

1. COMCLSIDFromPROGID and COMCreateObject
request COM to create an object with the ProgID
PowerPoint.Application.7, and to return a pointer
to the object’s IApplication interface.

2. The code gets the AppWindow object from the
Application object and calls its Visible member
function to make PowerPoint visible.

3. The code gets the Presentations object from the
Application object and calls its Open member
function to open a Presentation. Note that three
of the arguments to Open are of the VARIANT
data type. The code sets them to the values true
and false.

4. The code gets the SlideShow object from the
Presentation object and calls its Run member func-
tion to run the slide show.

DLLs When the Fortran Module Wizard reads the
type information describing a DLL, it generates an
interface description for each function in the DLL. It
also generates Fortran-derived types for data struc-
tures defined in the DLL type information. This
relieves the Fortran developer from manually translat-
ing header file descriptions to Fortran descriptions.
The Wizard also provides the option of generating
wrappers that convert from the Fortran representation
of strings to the C representation of strings and vice
versa. This option can be selected from the Wizard’s
initial dialog box (see Figure 2).

INTERFACE
FUNCTION
TABLE

FUNCTION 1

FUNCTION 2

FUNCTION 3

INTERFACE
POINTER POINTER

Figure 9
Interface Pointer to an Array of Function Pointers

Figure 10
Fortran Program to Invoke PowerPoint to Run Slide Presentation

! Create a PowerPoint Application object
! and make the AppWindow visible

1- CALL COMCLSIDFROMPROGID (“PowerPoint.Application.7,”
clsid, status)

CALL COMCREATEOBJECT (clsid, CLSCTX_SERVER, IID_Application,
ppApplication, status)

IF (ppApplication == 0) THEN
WRITE (*, ‘(“ Unable to create PowerPoint object; Aborting”)’)
CALL EXIT(-1)

END IF
2- status = $Application_GetAppWindow(ppApplication, ppAppWindow)

status = $ApplicationWindow_SetVisible(ppAppWindow, 1)

! Open the specified presentation
3- status = $Application_GetPresentations(ppApplication,

ppPresentations)
vTrue%VT = VT_BOOL
vTrue%VU%BOOL_VAL = VARIANT_BOOL_TRUE
vFalse%VT = VT_BOOL
vFalse%VU%BOOL_VAL = VARIANT_BOOL_FALSE
status = $Presentations_Open(ppPresentations, filename,

vTrue, vFalse, vTrue, ppPresentation)

! Run the slide show
4- status = $Presentation_GetSlideShow(ppPresentation, ppSlideShow)

status = $SlideShow_Run(ppSlideShow, 1, ppRun)

Digital Technical Journal Vol. 9 No. 1 1997 25

Comparison of the Wizard to the Capabilities of
Other Languages

Visual C++ version 5.0, Visual J++ version 1.1, and
Visual Basic version 5.0 all have wizards that can read a
type library and allow applications to use COM
and/or Automation objects.

The Visual C++ ClassWizard can read a type library
and create a class with all the functions of the
IDispatch interface described in the library. Visual C++
version 5.0 also adds a preprocessor directive,
#import. The #import directive reads a type library
and generates two header files that contain the defini-
tions of the COM objects defined in the type library.13

The Java Type Library Wizard within Visual J++
invokes the JavaTLB utility to convert the information
in a type library into Java .class files. A Java .class file is
the binary form of a Java class or interface.14

To use an object defined in a type library from
Visual Basic, the developer must add a reference to the
object using the Project menu, References command.
The References dialog box allows the user to select
from the list of registered type libraries in a manner
similar to the Fortran Module Wizard.15

The Fortran Module Wizard is unique in the fol-
lowing ways. The Fortran 90 programming language
does not inherently support objects. The Fortran
Module Wizard employs a combination of language
and run-time support to provide this capability. The
supporting language features are modules and proce-
dure pointers. The supporting run-time modules are
DFCOMTY, DFCOM, and DFAUTO. The Fortran
Module Wizard provides support for type libraries
containing the descriptions of DLL routines.

Fortran Module Wizard Architecture

The architecture of the Fortran Module Wizard is fairly
simple. The shell of the Wizard was generated by the
Custom AppWizard within Visual C++. The inner
workings of the Wizard consist of three major pieces:

■ Type information reader
■ Type symbol table
■ Fortran code generator

Figure 11 shows a high-level data flow of the
Fortran Module Wizard. The type information reader

traverses the data structures in the type information
and creates the type symbol table. The Win32 SDK
provides a sample application named BROWSE OLE
sample that is an example of traversing the information
in a type library. The type symbol table is a symbol
table similar to those used by compilers. It maps type
names to the descriptions of types. For simplicity, the
information is stored using the same data structures
used by the type information. The Fortran code gen-
erator traverses the symbol table and generates a
Fortran module.

The use of a symbol table allows for a complete
separation of the functionality of the type information
reader from the Fortran code generator. A code gener-
ator for another programming language could be
easily substituted, as could another source of type
information (for example, a C header file).

Future Directions

There are a number of possibilities for future work that
would add to the capabilities provided by the Fortran
Module Wizard.

■ Fortran support for ActiveX controls. An ActiveX
control is an Automation object. It is a reusable
component that normally provides a user interface
and is used in dialog boxes and other windows. The
Fortran Module Wizard can generate a module
that would allow a Fortran developer to use the
methods and properties of an ActiveX control.
However, additional functionality would be needed
in the Fortran run-time libraries to make controls
usable from a Fortran application. A control has
to be placed in a special type of window called a
Control Container. The Fortran run-time libraries
do not currently contain support for a Control
Container. In addition to methods and properties,
a control can define events. An event allows a con-
trol to notify its container when something of inter-
est happens to the control. For example, a “Button
control” could define a “Clicked event.”

■ Fortran Windows Application Wizard. This Wizard
could generate starter files for a Fortran Windows
application. This would be especially useful if we
were to implement the Fortran support for ActiveX
controls.

TYPE
INFORMATION

TYPE
INFORMATION
READER

TYPE SYMBOL
TABLE

FORTRAN
CODE
GENERATOR

FORTRAN
MODULE

Figure 11
Data Flow of the Fortran Module Wizard

■ Fortran modules from C header files. By replacing
the type information reader described in the previ-
ous section with a C parser, we could generate
Fortran modules directly from .h files. This would
expand the set of services that are easily available to
Fortran developers.

■ Fortran Server Wizard. This Wizard would take a
Fortran module provided by a Fortran developer
and package it as a COM object. It would also gen-
erate a type library that describes the object. This
object could then be used by any COM client, for
example, Visual Basic, Visual C++, and Visual J++
applications.

References and Notes

1. Digital Fortran Books Online (Maynard, Mass.: Digital
Equipment Corporation, 1997).

2. Digital Fortran 90 Language Reference Manual
(Maynard, Mass.: Digital Equipment Corporation, 1997).

3. For a period of time, Microsoft used the name OLE to
encompass all of its component integration technology,
including COM. Now OLE is applied only to com-
pound document technology.

4. K. Brockschmidt, Inside OLE, Second Edition (Redmond,
Wash.: Microsoft Press, 1995).

5. K. Brockschmidt, “How OLE and COM Solve the
Problems of Component Software Design,” Microsoft
Systems Journal, vol. 11, no. 5 (May 1996): 63–80.

6. D. Chappell, Understanding ActiveX and OLE (Red-
mond, Wash.: Microsoft Press, 1996).

7. OLE 2 Programmer’s Reference, Volume Two (Red-
mond, Wash.: Microsoft Press, 1994).

8. The Component Object Model Specification 0.9
(Redmond, Wash.: Microsoft Corporation, 1995).

9. Automation was originally called OLE Automation.

10. Before IDL and MIDL, Microsoft provided the Object
Description Language (ODL) and a compiler named
MKTYPLIB.

11. Developer Studio Environment User’s Guide (Red-
mond, Wash.: Microsoft Corporation, 1997).

12. Microsoft Office 97 includes a new Office object model
that offers another set of interfaces to Word services.

13. G. Shepherd, “Visual C++ Simplifies the Process for
Developing and Using COM Objects,” Microsoft
Systems Journal, vol. 12, no. 5 (May 1997): 37–48.

14. G. Eddon and H. Eddon, “Understanding the Java/
COM Integration Model,” Microsoft Interactive
Developer, vol. 2, no. 4 (April 1997): 56–68.

15. Microsoft Visual Basic 5.0 Books Online (Redmond,
Wash.: Microsoft Corporation, 1997).

Biography

26 Digital Technical Journal Vol. 9 No. 1 1997

Leo P. Treggiari
Leo Treggiari is a consulting software engineer in the Core
Technology Group. He was responsible for developing the
Module Wizard in the DIGITAL Visual Fortran product
for the Fortran programmer working in a Microsoft
Windows environment. Previous to this work, he was
project leader for the development of several programming
tools, including the Motif toolkit. Leo came to DIGITAL
in 1979 from Wang Laboratories. He holds a B.S. (1975,
summa cum laude) in chemistry from Boston College and
is a member of ACM.

